Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term
نویسندگان
چکیده
In this paper we consider the Cauchy boundary value problem for the integro-differential equation utt −m ( ∫
منابع مشابه
Random fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملA Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index
In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...
متن کاملOn a class of stochastic semilinear PDE’s
We consider stochastic semilinear partial differential equations with Lipschitz nonlinear terms. We prove existence and uniqueness of an invariant measure and the existence of a solution for the corresponding Kolmogorov equation in the space L(H ; ν), where ν is the invariant measure. We also prove the closability of the derivative operator and an integration by parts formula. Finally, under bo...
متن کامل